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Plan for the talk

– Relevant S: What is it and why is it(s decision problem)
interesting?

– Proof technique: undecidability through tiling
– A simpler, yet illustrative proof: no FMP
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Defining Relevant S

Definition (language and semantics)
The language is given by

φ ::= p | φ ∧ φ | φ ∨ φ | φ→ φ.

and the semantics of ‘→’ is:

x ⊩ φ→ ψ iff ∀y: y ⊩ φ⇒ x ⊔ y ⊩ ψ

Example
x ⊔ y ⊮ q

x ⊮ p→ q y ⊩ p

0

Definition (frames and validity)
A frame F = (S,⊔,0) is a semilattice (S,⊔) with least element 0 ∈ S; i.e.,

• Commutative: x ⊔ y = y ⊔ x,
• Associative: (x ⊔ y) ⊔ z = x ⊔ (y ⊔ z),
• Idempotent: x ⊔ x = x.
• Identity (least element): x ⊔ 0 = x.

Equivalently, it is a partial order with all binary joins and a least element.
Finally, a formula φ is valid iffM,0 ⊩ φ for all modelsM. 3



Problem of concern: Is S’s validity problem
decidable?
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But first: why is this interesting?
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Motivation

Setting
• S was introduced by Urquhart (1972, 1973).
• It’s a close relative of R and its positive reduct R+ = R{∧,∨,→}.

– In fact, S{∧,→} = R{∧,→}.
• Relevant logics are substructural logics, thus sharing close affinities
with, e.g., linear logic.
– For instance, R+ is positive linear logic + distribution of additive
connectives + contraction.

– As a rule of thumb: linear logics + contraction = relevant logics.

Why is S’s decision problem interesting?
• Omitting disjunction, the logic S{∧,→} is decidable.
• S is closely connected to positive relevant R+, which is undecidable.

– This, among more, was shown by Urquhart (1984), but S eluded
these techniques.

– Eventually, this led Urquhart (2016) to conjecture that S is
decidable.
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Overarching theme: Understanding the
decidability/undecidability boundary in the

realm of substructural logics.
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Proof method: tiling

• A (Wang) tile is a square with colors on each side.
• The tiling problem: given any finite set of tilesW , determine whether
each point in the quadrant N2 can be assigned a tile fromW such that
neighboring tiles share matching colors on connecting sides.

• The tiling problem was introduced by Wang (1963) and proven
undecidable by Berger (1966).

Figure 1: Wang tiles
Figure 2: A tiling of the
plane

Figures taken from: https://en.wikipedia.org/wiki/Wang_tile
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Main theorem

Theorem
S is undecidable.

Proof idea.
For each finite set of tilesW , we construct a formula ψW such that
W tiles the quadrant if and only if ψW is refutable.
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Guide to Paper, and Summary

Guide to paper: The conference paper also contains a proof that S lacks
the FMP. If interested, I recommend reading this first, as it is considerably
simpler than the undecidability proof, yet effectively illustrates some of the
same key ideas.
Summary and further work

• S is undecidable.
• Proven via tiling
• Themes of undecidability proof echoed in the simpler no-FMP
proof

• Similar ideas recently applied to solve open problems in the area of
modal and temporal logics.1

• Future work includes decision problems in the vicinity of linear logic,
separation logic, and relevant logic.

• For instance, is ‘contraction-free’ S decidable?
1including the longstanding open problem of the decidability of hyperboolean modal
logic, as posed by Goranko and Vakarelov (1999).
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Thank you!
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Proof method: tiling

Theorem
Given any logic whose language contains {∧,∨,→}, if its {∧,∨,→}-reduct
extends S and is valid on (P(N),∪,∅), then it is undecidable. In particular, S
is undecidable.

Proof idea.
For each finite set of tilesW , we construct a formula ψW such thatW tiles
the quadrant if and only if ψW is refutable.

Lemma
If ψW is refutable (in a semilattice), thenW tiles N2.

Lemma
IfW tiles N2, then ψW is refutable (in (P(N),∪,∅)).
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Relevant S is undecidable: Proof idea

Theorem: S is undecidable.

We cover the no-FMP proof instead, since it is
considerably simpler than the undecidability
proof, yet effectively illustrates some of the
same key ideas.2

Theorem: S lacks the FMP.

Proof. We show that the formula ψ∞ from the
paper only is refuted by infinite models.

2 Additionally, it addresses an open problem (as
recently raised in Weiss 2021)

Refuting model

0

x0 ⊩ o x1 ⊩ o

x0 ⊔ x1 ⊩ e x2 ⊩ e

x0 ⊔ x1 ⊔ x2 ⊩ o x3 ⊩ o

x0 ⊔ x1 ⊔ x2 ⊔ x3 ⊩ e
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