$\label{eq:relevant} \mbox{Relevant } \mathbf{S} \mbox{ is } \mbox{Undecidable}$

Søren Brinck Knudstorp

ILLC, University of Amsterdam

July 8, 2024

LICS '24

- Relevant **S**: What is it and why is it(s decision problem) interesting?
- Proof technique: undecidability through tiling
- A simpler, yet illustrative proof: no FMP

Defining Relevant ${\bf S}$

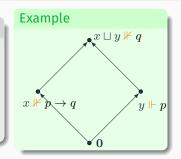
Definition (language and semantics)

The language is given by

$$\varphi ::= p \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi.$$

and the semantics of ' \rightarrow ' is:

$$x \Vdash \varphi \to \psi \quad \text{iff} \quad \forall y \colon y \Vdash \varphi \Rightarrow x \sqcup y \Vdash \psi$$



Definition (frames and validity)

A frame $\mathfrak{F} = (S, \sqcup, \mathbf{0})$ is a semilattice (S, \sqcup) with least element $\mathbf{0} \in S$; i.e.,

- Commutative: $x \sqcup y = y \sqcup x$,
- Associative: $(x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$,
- Idempotent: $x \sqcup x = x$.
- Identity (least element): $x \sqcup \mathbf{0} = x$.

Equivalently, it is a **partial order** with all **binary joins** and a **least element**. Finally, a formula φ is **valid** iff $\mathfrak{M}, \mathbf{0} \Vdash \varphi$ for all models \mathfrak{M} .

Problem of concern: Is S's validity problem decidable?

But first: why is this interesting?

Motivation

Setting

- **S** was introduced by Urquhart (1972, 1973).
- It's a close relative of \mathbf{R} and its positive reduct $\mathbf{R}^+ = \mathbf{R}_{\{\wedge, \lor, \rightarrow\}}$.

- In fact, $\mathbf{S}_{\{\wedge, \rightarrow\}} = \mathbf{R}_{\{\wedge, \rightarrow\}}.$

- Relevant logics are substructural logics, thus sharing close affinities with, e.g., linear logic.
 - For instance, \mathbf{R}^+ is positive linear logic + distribution of additive connectives + contraction.
 - As a rule of thumb: linear logics + contraction = relevant logics.

Why is S's decision problem interesting?

- Omitting disjunction, the logic $\mathbf{S}_{\{\wedge,\rightarrow\}}$ is decidable.
- $\cdot \, \, {\bf S}$ is closely connected to positive relevant ${\bf R}^+$, which is undecidable.
 - This, among more, was shown by Urquhart (1984), but **S** eluded these techniques.
 - Eventually, this led Urquhart (2016) to conjecture that **S** is decidable.

Overarching theme: Understanding the decidability/undecidability boundary in the realm of substructural logics.

Proof method: tiling

- A (Wang) tile is a square with colors on each side.
- The tiling problem: given any finite set of tiles \mathcal{W} , determine whether each point in the quadrant \mathbb{N}^2 can be assigned a tile from \mathcal{W} such that neighboring tiles share matching colors on connecting sides.
- The tiling problem was introduced by Wang (1963) and proven undecidable by Berger (1966).

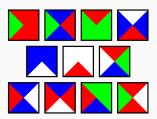


Figure 1: Wang tiles

Figures taken from: https://en.wikipedia.org/wiki/Wang_tile

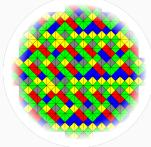


Figure 2: A tiling of the plane

Theorem

 ${f S}$ is undecidable.

Proof idea.

For each finite set of tiles \mathcal{W} , we construct a formula $\psi_{\mathcal{W}}$ such that \mathcal{W} tiles the quadrant if and only if $\psi_{\mathcal{W}}$ is refutable.

Guide to Paper, and Summary

Guide to paper: The conference paper also contains a proof that **S** lacks the FMP. If interested, I recommend reading this first, as it is considerably simpler than the undecidability proof, yet effectively illustrates some of the same key ideas.

Summary and further work

- \cdot **s** is undecidable.
 - Proven via tiling
 - Themes of undecidability proof echoed in the simpler no-FMP proof
- Similar ideas recently applied to solve open problems in the area of modal and temporal logics.¹
- Future work includes decision problems in the vicinity of linear logic, separation logic, and relevant logic.
 - For instance, is 'contraction-free' **S** decidable?

¹including the longstanding open problem of the decidability of hyperboolean modal logic, as posed by Goranko and Vakarelov (1999).

References I

- Berger, R. (1966). The undecidability of the domino problem. English. Vol. 66. Mem. Am. Math. Soc. Providence, RI: American Mathematical Society (AMS). DOI: 10.1090/memo/0066 (cit. on p. 8).
- Goranko, V. and D. Vakarelov (1999). "Hyperboolean Algebras and Hyperboolean Modal Logic". In: Journal of Applied Non-Classical Logics 9.2-3, pp. 345–368. DOI: 10.1080/11663081.1999.10510971 (cit. on p. 10).
- Urquhart, A. (1972). "Semantics for relevant logics". In: Journal of Symbolic Logic 37, pp. 159–169 (cit. on p. 6).
- (1973). "The Semantics of Entailment". PhD thesis. University of Pittsburgh (cit. on p. 6).

References II

- - Urquhart, A. (1984). **"The undecidability of entailment and relevant implication".** In: *Journal of Symbolic Logic* 49, pp. 1059 –1073 (cit. on p. 6).
- (2016). "Relevance Logic: Problems Open and Closed". In: The Australasian Journal of Logic 13 (cit. on p. 6).
- Wang, H. (1963). "Dominoes and the ∀∃∀ case of the decision problem". In: Mathematical Theory of Automata, pp. 23–55 (cit. on p. 8).
- Weiss, Y. (2021). "A Conservative Negation Extension of Positive Semilattice Logic Without the Finite Model Property". In: *Studia Logica* 109, pp. 125–136 (cit. on p. 15).

Thank you!

Theorem

Given any logic whose language contains $\{\land,\lor,\rightarrow\}$, if its $\{\land,\lor,\rightarrow\}$ -reduct extends **S** and is valid on $(\mathcal{P}(\mathbb{N}),\cup,\varnothing)$, then it is undecidable. In particular, **S** is undecidable.

Proof idea.

For each finite set of tiles \mathcal{W} , we construct a formula $\psi_{\mathcal{W}}$ such that \mathcal{W} tiles the quadrant if and only if $\psi_{\mathcal{W}}$ is refutable.

Lemma

If $\psi_{\mathcal{W}}$ is refutable (in a semilattice), then \mathcal{W} tiles \mathbb{N}^2 .

Lemma

If \mathcal{W} tiles \mathbb{N}^2 , then $\psi_{\mathcal{W}}$ is refutable (in $(\mathcal{P}(\mathbb{N}), \cup, \varnothing)$).

Relevant S is undecidable: Proof idea

Theorem: S is undecidable.

We cover the no-FMP proof instead, since it is considerably simpler than the undecidability proof, yet effectively illustrates some of the same key ideas.²

Theorem: S lacks the FMP.

Proof. We show that the formula ψ_{∞} from the paper only is refuted by infinite models.

² Additionally, it addresses an open problem (as recently raised in Weiss 2021)

